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Abstract

The computational complexity of finding a Nash equilibrium in a nonzero sum bimatrix game is an important open question.
We put forward the notion of0, 1)-bimatrix games, and show that some associated computational problems are as hard as in
the general case.
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1. Introduction games, which is considered one of the most important
open guestions in computational complexity today [7,
With the advent of the Internet, algorithms and pro- 8]. Despite animpressive amount of work (see, e.g., [3,
tocols are starting to embed features imported from 10]) it is still unknown if a Nash equilibrium for these
Game Theory. This has led to a growing interest to- games can be computed in polynomial time, even in
ward the computational complexity of the fundamen- the two player case. On the other hand, NP-hardness
tal game theoretic notions. In the setting of noncoop- results are known for the computation of Nash equilib-
erative games, particular attention has been given to ria with additional properties, e.g., with payoffs above
the computation of Nash equilibria for nonzero sum a given threshold [1,2].
In this paper we start exploring some complexity
 comrespondi o guestions related to games where the payoff to the
E?ére?ﬁzodgrg;z:;)tcgc;.enotti@tti-c.org (B. Codenotti), players is eithelt Z€ro or one. M_O.re_preCisely’ we quk
stefanko@cs.uchicago.edu (D. Stefankpvi at the computation of Nash equilibria for a class of bi-
1 On leave from IIT-CNR, Pisa, Italy. matrix games, which we caflimple bimatrix games



(SBGs from now on), where the payoff matrices are likely it is that each pure strategy is played. In other
(0, 1) matrices. words, each player associates to Hérpure strategy
By reduction from 3SAT, we show that it is NP- anumberp; between 0 and 1, such that, p; = 1.
complete to decide whether there is more than one Let us consider a two-player game, where each
Nash equilibrium in an SBG. The proof of this result player hasn pure strategies, and let be a mixed
also leads to the NP-hardness of finding a Nash equi- strategy of the row player, ang a mixed strat-
librium with payoff at leask for one of the players. egy of the column player. Strategy is the n-tuple
To prove our results, we associate to an SBG a di- x = (x1,x2, ..., x,), wherex; >0, and)_7_; x; = 1.
rected graph and we introduce a graph property, which Similarly, y = (y1, y2,..., y,), where y; > 0, and
we callgood assignmeniVe reduce 3SAT to the ex- 3" ;y; = 1. Let now A = (a;;) be the payoff ma-
istence problem for good assignments (other than atrix of the row player. The entry;; is the payoff to the
trivial one). row player, when she plays héh pure strategy and
Adopting the terminology from [5], let us cailin- the opponent plays the pure strategyAccording to
itation SBGs the SBGs where the row player, called the mixed strategies andy, the entryq;; contributes
theimitator, gets payoff 1 if she makes the same move to the expected payoff of the row player with weight
as the opponent, and 0 otherwise. x;yj. The expected payoff of the row player can be
We show the equivalence between SBGs and imita- evaluated by adding up all the entriestofveighted by
tion SBGs, and prove that there is a one-to-one corre- the corresponding entries efandy, i.e., the payoff is
spondence between good assignments and Nash equi_; . x;y;a;;. This can be rewritten &%, x; 3~ ai;y;,
librium strategies for the imitator in imitation SBGs.  \yhich can be expressed in matrix termg ad Ay.

an imitation SBG, there is always one Nash equilib- , T,

rium corresponding to a win for the imitator, while the A pair (x,y) is in Nash equilibrium ifxTAy >
existence of another Nash equilibrium, more favorable /T 4y andxTBy > xT By, for all stochastio:-vec-
to the other player, is subject to the satisfiability of & or5x" andy’. If the pair(x, y) is in Nash equilibrium,

given formula. _ _ we say thatx (resp.y) is aNash equilibrium strat-
Our results can be summarized by the following egyfor the row (resp. column) player. Itis well known
theorem. that a Nash equilibrium in mixed strategies always ex-
_ ists [6].
Theorem 1. Itis NP-complete To avoid trivial pure strategy Nash equilibria, we

) assume that the matrices and B do not have en-
(2) to decide whether an SBG has more than one Nash yjes equal to 1 in the same position. In other words
equilibriuny S the game does not have outcomes where both players
(b) to decide whether an imitation SBG has a Nash \in on the other hand, there are outcomes where both

equilibrium with nonzero payoff for imitator's op-  pjayers lose, because of the nonconstant sum assump-
ponent. tion.

2. Background on bimatrix games 3. Hardnessresults

We consider SBGs irstrategic or normal form
These games are described in terms of t@d) ma-
trices, containing th@ayoffsof the two players. The
rows (resp. columns) of both matrices are indexed by
the row (resp. column) playerfaure strategies

A mixed strategy consists of a set of pure strategies
and a probability distribution (a collection of nonneg-
ative weights adding up to one) which indicates how 2 we use the notation' to denote the transpose of vector

Let G be a directed graph. Let be an assign-
ment of nonnegative weights to the vertices @f
We will assume thate is normalized, i.e.||x|1 =
> i xi = 1. Theincomei, (v) of a vertexv is the sum
of weights of vertices which point tov, i.e., i, (v) =



> w:w.v)eG Xu- A vertexu is happyif it has highest in-
come (i.e.i,(v) > iy (u) for all u € G). A vertexv is
working if it has nonzero weight (i.ex(v) > 0). An
assignmentr is good if all the working vertices are
happy. As we will see later there always exists a good
assignment.

Lemma 2. It is NP-complete to decide if there are at
least two good assignments in a given graph

Proof. We will show a reduction from 3SAT. LeF

be a formula withm clauses and: variables. With-
out loss of generality we can assume that 3, for
some integek > 1. Let graphH have literal vertices
xi,X;, 1<i < n, clause vertexC and clause filling
verticesvy ¢, v2,c for each clauseC in F. Connect
each literal vertexX to clause vertexC, if ¢ is in C.
Connect clause filling verticas, ¢, vz, ¢ to the clause
vertexC. Add a ternary tred@ with edges directed to-
wards the root, such that the clause vertices are the
leaves ofT'. Leta be the root off'. Connecta to the
clause filling vertices. This definegd. Now we con-
struct the graptG by adding vertices td. For each
triple d of vertices inH —a we add an equality check-
ing vertexw, and connect the vertices ihto w,. We
also add vertices;, y;, zi, 1<i < n, and connecy;

to bothx; andz;, y; to bothx; andz;, anda to both

y; andy;, for 1 <i < n. Finally we add a vertex
and connect all the equality checking vertices, vertex
a,andz;, 1<i <n,tor. A sketch of this construc-
tion is shown in Fig. 1. Clearly the weight assignment
which givesr weight 1 is good (nobody earns any-
thing).

We now prove that there is another good weight as-
signment inG if and only if F is satisfiable.

Assume thatF" is satisfiable. Fix a satisfying as-
signments of F. Assign weight 1 to the satisfied
literals and weight 3 to their predecessors (a sub-
set of they; and y;). (Note that we are using in-
teger weights; we can then derive a normalized as-
signment by properly scaling all the weights.) Assign
weight 1 to each clause vertex and some of its fill-
ing vertices so that the income of each clause ver-
tex is 3. Further assign weight 3 to the vertexand
weight 1 to the rest of vertices ifi. Assign weight
0 to all the remaining vertices af. Clearly the ob-
tained assignment is good, as the reader can verify

for all triples in H

\ 1/ \ 1

from the z,

tothey, ,V, Vg, , Ve
r

Fig. 1. A sketch of grapl@'. The large rectangle includes graph
except for vertex:.

by direct inspection of the status of each type of ver-
tices.

To show the other direction, assume thas a good
assignment irG. If a does not work then the assign-
mentx must giver weight 1 and weight 0 to every
other vertex, becaus@ —aq is an acyclic graph and
is its unique sink. Hence we can assume thaiorks.
Similarly at least one of the successorsaof{other
thanr) must work, because otherwigeould not have
a positive income. Since cannot have a higher in-
come tharu, the weight of the;’s and of the equality
checking vertices is zero. Without loss of generality let
the weight ofa (and hence also the income of every
happy vertex) be 3.

The sum of weights of the predecessors:afiust
be 3, and hence the weight of any vertexHn-a is at
most 1. Assume this is not the case, i.e., that there is
a vertexw in H —a with weight larger than 1. LeW’
be the set of predecessorsagfif w is not a predeces-
sor ofa, and the set of predecessorsuof otherwise.
Let W” be the set containing the two vertices frévi
of highest weight. Since the sum of the weights of the
vertices inW’ is at least 3, the sum of the weights of
the vertices inW” is at least 2, so that the two ver-
tices inW” together withw have weight strictly larger
than 3. This is a contradiction, since the correspond-
ing equality checking vertex has income strictly larger
than 3.

Therefore all the vertices il —a must have
weight 1. In particular each clause vertex must be
working, and hence be happy. Therefore for each



clause vertexC at least one of its literals must be The pairs(x;, y;), fori =1, 2, 3, 4, are Nash equilibria
working, otherwiseC would earn at most 2. Note that  for the gameg/, C).

x; and x; cannot both be working for otherwisg

andy; would have weight 3, and hencewould eamn We are now ready to prove the theorem stated in the
6, thus makingz unhappy. It follows that the set of | +oduction.

working literal vertices induces a satisfying assign-

mentforF. O
Proof of Theorem 1. (a) The proof follows from

We now show the connection between good assign- Lemma 2 and from the correspondence between Nash
ments and Nash equilibria. equilibria and good assignments stated in Lemma 3.
(b) The problem of deciding whether an imitation

Lemma 3. Let (/, C) be an SBG. LeG[C] be the SBG has a Nash equilibrium with payoff at ledst

equilibrium strategies of the imitator itZ, C) are in ~ €quilibrium corresponding to the good assignment in

one-to-one correspondence with the good assignmentsLemma 2 in which only- works has payoff zero for

in G[C]. the column player, sinceis a sink, and the respective
row of the adjacency matrix is zero. The Nash equi-

Proof. Let x be a good assignment f@[C]. Then libria corresponding to good assignments arising from

the vector of incomes T C is maximal on coordinates ~ satisfying assignments af have nonzero payoff for

wherex is nonzero. Lety be uniform on entries on  the column player. O

which x is nonzero. The vector of pure strategy pay-

offs for the imitator in(/, C) is Iy = y, and hence We finally show a general relation between imita-

(x, y) is a Nash equilibrium fotZ, C). tion games and bimatrix games. The following lemma
To see the other direction, let us consider any Nash jmplies that finding Nash equilibria of imitation games

equilibrium (x, y) for (1, C). Assumex is nota good s not easier than finding Nash equilibria of general

assignment foilG[C]. Then there is a nonzero entry  games, in a sense to be made precise below.

of x, sayx;, such thatx"C); < (xTC);, for some;.

Thereforey; = 0, which in turn implies thak; = 0,

which is a contradiction. o Lemma 5. Let A, B be twom x n matrices with

nonnegative entries, wheré" and B have no zero
row. Let C = (%%) and let 7 be the (m + n) x
(m + n) identity matrix. The Nash equilibria of the
game(A, B) are in one-to-one correspondence with
the Nash equilibrium strategies of the row player in

the gamg, C).

The following example illustrates the one-to-one
correspondence stated in Lemma 3.

Example 4. Let us consider the matrix

01 1 1
1 0 0O
C= 10 0 ol Proof. Let x,y be a Nash equilibrium of the game
000 O (A,B). Let x'T = (axT, By"), wherea, g > 0 are
such that max (Ay); = e max (x' B); and ||x'||l1 =
1. Note that suclx, 8 exist since maxAy); > 0 and
max (x"B); > 0.
x1= (% %w %’ 0), xp = (% % 0,0), . Let y’ be uniform on the coordinates on whigh
_ (101 —(0.0.0.1 is nonzero. Note that the vectof' C of pure strategy
x3=(3.0.30, x=(0001. payoffs to the imitator's opponent {8yTAT, axT B),

It is easy to check that the following are good assign-
ments forG[C]:

Moreover, let us consider the vectors which is maximal on the coordinates played by the im-
111 11 itator's opponent, because y is a Nash equilibrium

»1=(3.3.3.0). y2=(3.3.0.0). of the gameg(A, B), and by the definition o& andg.

vs=(3.0,1,0), y4=(0,0,0,1). Clearlyx’, y' is a Nash equilibrium of the ganié, C).



Letx’, y' be a Nash equilibrium of the gangg, C).
Letx’T = (xT, y7). Because of the assumption dn
andB, bothx andy are nonzero.

Let «, B be such thaf|ax|1 = [|Byll1 = 1. Then
(ax, By) is aNash equilibrium of the ganid, B). O

Remark 6. In Lemma 5 we have assumed thelt and

4. Open questions and further work

Despite a lot of effort over the last years, the answer
to the fundamental complexity questions in Game
Theory has so far remained elusive. SBGs provide a
simpler and somewhat more structured framework in
which some of these questions still make sense, and

B have at least one nonzero entry in each row. Note might become easier.
that the adjacency matrix of Lemma 2 does not satisfy ~ Our work on SBGs leaves a number of unanswered
this assumption, since it contains a zero row, corre- questions.

sponding to vertex in the construction of grapl:
(see Fig. 1).

However we can modify any given bimatrix game
(A, B) without changing its equilibrium structure, by
adding a constant to any column gf and/or to any
row of B. In particular, we can replace any all-zero
column of A by a column of all ones, and we can re-
place any all-zero row oB by a row of all ones.

This transformation allows us to conclude that im-

Are SBGs adard as more general bimatrix games?
For instance, are they any easier than games where the
payoffs can be 0, 1, or 2? Or, rather, is there a poly-
nomial time computable reduction mapping the latter
games into SBGs?

The most popular algorithm for computing Nash
equilibria for bimatrix games is Lemke—Howson al-
gorithm [3]. There are simple instances of bimatrix
games where Lemke—Howson algorithm takes expo-

itation SBGs are as hard as general SBGs, in the fol- nential time [9]. Are there lower bounds on the perfor-

lowing sense: if we can efficiently decide if there is
more than one Nash equilibrium for imitation SBGs,

mance of Lemke—Howson algorithm for SBGs?
Quasi polynomial time algorithms are known for

then we can do it for general SBGs (see part (a) of the computation of aapproximate Nash equilibrium

Theorem 1).

for bimatrix games [4]. Is it easier (perhaps poly-

However the transformation changes the payoff nomial-time) to find an approximate Nash equilibrium
structure, so that we cannot reach a similar conclusion for SBGs?

for part (b) of Theorem 1.

The following example illustrates Lemma 5 and its
proof.

Example 7. Let us consider the bimatrix ganié, C),
where
0 01 1
0 001
{1100
1 000

A Nash equilibrium strategy for the imitator is
given byx’ = (3,0,0, 3), while a Nash equilibrium

strategy for the imitator's opponent is a mixed strat-
egy which is nonzero and uniform on the coordinates

wherex’ is nonzero.

Now consider the bimatrix gaméA, B), where
A= (1) andB = (3.

Now, from the second part of the proof of Lemma 5,
pick @ = 8 = 2. We readily obtainr = (1, 0), andy =
(0, 1), which form a Nash equilibrium fotA, B).
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